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Abstract—The full set of fundamental solutions for the linear viscoelastic problem ts derived
from the relevant elastic fundamental solutions using the well-known so-called “correspondence
principle”. The fundamental solutions are given for the 3D-continuum, the 2D-plane strain and the
2D-plane stress problem using a wide range of linear viscoclastic constitutive law models.

Finally. the possible ficlds of application of the determined fundamental solutions are given
using symmetric BIE formulations in space and time.

1. INTRODUCTION

The problem of determining the response of a viscoelastic body under given time-dependent
foads has been tackled with a number of methods depending on the numerical technique
and the representation of the constitutive model adopted.

After the first formulations of the viscoclastic problem by Boltzmann (1874) (for
a 3D isotropic continuum) and by Volterra (1909, 1913) (for anisotropic solids), the
correspondence principle of Alfrey (1944, 1945) gave, through the Laplace transform
technique (Doctsch, 1956 Ghizzetti and Ossicini, 1971), a formal method widely and
successfully adopted by Lee (1955), Mandel (1955) and others (Tsien, 1950 ; Radok, 1957;
Lee, 1958 Naghdi and Orthwein, 1960 Tao, 1963 ; Rogers und Lee, 1964 ; Herrera and
Gurtin, 1964, Graham, 1968 ; Rizzo and Shippy, 1971; Carpenter, 1972 Graham and
Sabin, 1973) to derive the viscocelastic solution of a problem when the corresponding clastic
solution is available in closed form.

Then, in connection with the evolution of the numerical solution techniques for elastic
problems, the step by step time integration together with the finite clement space-dis-
cretization methods were adopted by a number of authors (White, 1958 ; Zienkiewicz et al.,
1968 ; Webber, 1969 ; Taylor e «l., 1970 ; Cameron and McKee, 1981).

In the same period another trend of studies {mainly developed by Biot (1955), Gurtin
(1963), Schapery (1964), Leitman (1966), Christensen (1968), Tonti (1973), Reddy (1976)
and Reddy and Rasmussen (1982)] was devoted to the formulation of the same problem
in variational terms in space and time.

More recently, in connection with the development of the theory of the boundary
integral equations (BIE) for clastic continua (Brebbia ef al., 1984), another approach
was adopted for viscoclastic problems using the correspondence principle (Bancrjee and
Butterficld, 1981 ; Kusama and Mitsui, 1982 Shinokawa er al., 1985; Wolf and Darbre,
1985 ; Sun and Hsixo, 1985 ; Tanaka, 1985 Carini and Gioda, 1986).

In the context of the BIE method. recent contributions for elastic (Sirtori, 1979
Polizzotto, 1988a.b) and clastoplastic (Maier and Polizzotto, 1987; Polizzotto, 1988a.b)
continua and for the stcady-state heat conduction problem (Costabel, 1987) allowed. by
the variational methods adopted for the viscoclastic problems, to attain even under a BIE
approach a variational formulation in space and time of lincar time dependent problems
like transient heat conduction (Carini ef al.. 1991a,b). elastodynamics (Maier ¢t al., 1991),
viscoelasticity (Carini et al., 1991a,b). etc.
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In the above contributions, Gebbia’s (1891, 1902, 1904) fundamental solution for a
unit concentrated displacement discontinuity (besides the well-known solution for a unit
concentrated force due to Kelvin) was required to find the BIE elastic symmetric for-
mulation ; analogously. the fundamental solutions for a unit concentrated displacement
discontinuity and for a unit concentrated deformation were required for the corresponding
elastoplastic symmetric formulation.

In this context the aim of the present paper is to find, in the viscoelastic range, the
fundamental solutions corresponding to the above elastic solutions as a contribution to the
development of variational formulations of the viscoelasticity in space and time by BIE
approach. Moreover, these solutions are also going to prove their usefulness for the vari-
ational, formulations of visco-elasto—plastic continua.

In Section 2, after a brief summary of the classical representations of the hereditary
linear viscoelastic constitutive laws in integral and differential form, the recursive formula
for the coefficients of the differential form for the generalized Kelvin and Maxwell models
are derived (Appendix A).

Section 3 is devoted to the description of the correlations between the elastic fun-
damental solutions, which are collected, from a scattered literature, in a compact form in
Appendix B.

Finally, in Section 3, using the correspondence principle (described in Section 4). the
viscoelastic fundamental solutions are derived using the differential form of representation
of the constitutive laws,

I HEREDITARY LINEAR VISCOCELASTIC CONSTITUTIVE LAW

The two classical representations of the hereditary lincar viscoclastic constitutive law
(Gurtin and Sternberg, 1962 ; Mandel, 1966 ; Christensen, 1971) used in the following, are
summarized here:

(a) Integral form
A classical representation at time ¢ of the above law in the integral form is the following :

H

Gry{x' I) = }{uﬁk(xt ’) ‘};kk(x- 0)+j‘ Hr‘;fik(x* t“t) dﬁ&k(x. t)v (i)

g

where a,;, &, H, . are the stress tensor, strain tensor and relaxation viscous kernel tensor,
respectively, t being the integration variable. An equivalent form, derived from (1) by
integration by parts is:

"OH (X, t—
o, (%) = H, (X, 0)::,,k(x.t)+f O, 2 e (X, 1) d1. (ta)

0 0(!—-1)

The inverse constitutive fuw has the following corresponding forms:

!

e, {x 1) = I\',,M(x.:)a,,k(x.O)+J‘ K (x. t—~tydoy(x, 1), (2)

it}

"OK (X -
£,(x 1) = I\',,,,,,.(x,())a,,,.(x.r)-i-f iéma,,k(x,t)dr. (2a)

0 ()(['—T)

where K, is the creep viscous kernel tensor.
The symmetry of the stress and strain tensors implies
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{H:/hk(x~ I) = Hﬂhk(x~ t) = Hi[kh(x~ t)'
Kz/hk(x- [) = K/lhk(x' t) = Kl/kh(x' [)~ (3)

while for isotropic materials the following expression of the relaxation kernel H, ;. (x.1)
holds:

Hp(x.t) = {[H(x.0) = H (X, 0]0;;0m + 1H,(x, (04 +0ubn), @)

H,(x.t) and H;(x, ) being the so-called tangential and volumetric relaxation functions,
respectively.
Using the stress and strain deviators s;;, e,

&)

{5,'/ =0;— %‘Z/Ukkv

€ = &;— %‘sijakk,

the above constitutive law for isotropic materials takes the direct form

t

s (x. 1) = H.(x.l)c,,-(x.O)+J H (x,t—1)de;(x. 1),
’ (6a.b)

t

g (X, 1) = Ilz(x.l)::kk(x,0)+J H.(x.t—1t)de (x. 1),
[}]

or the tnverse form

1

e, (.1 = K(x, t).v,,(x.())-}-j Ki(x,1—1)ds, (x, 1),
0 (7a,b)

!

x, ) = K;(x,l)okk(x.0)+j Ky(x.t=1)do, (x, 7).

where K (x, 1) and A,(x, ) arc the so-called tangential and volumetric creep functions
corresponding to the analogous /, and #H, functions given above.

For homogencous materials the relaxation (H,, H,) and creep (K. K,) functions are
space independent.

For isotropic materials the following have to be added to the above symmetry relations
[eqn (3)]:

II:/I:I( = ilhl(l/' k‘l/hk = thi/- (3"‘)
(b) Differential form

A classical representation of the hereditary linear viscoelastic constitutive law in differ-
ential form is the following :

Pl/hk(D)o.hk(x‘ ’) = QI[IIA(D)‘:Ilk(x' I)' (8)

where, using the notation adopted by Alfrey (1945), P, (D) and Q, (D) are tensors of
lincar difTerential operators, i.e.:

Pt/hk(D) = Z (”r):/th’; Ql;hk(D) = z (hr)i/thr' (9)

r=0 r=0

where the components of the tensors (a,);,u and (b,),« are rcal constants and D* is the
operator “kth derivative”, i.c.:
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d
D' f= D f = f. (10)
For isotropic materials, eqn (8) specializes in the following two relations to:
(11a.b)

{PI(D)s',,(x.t) =@ (D)e,(x.0),
P:(D)o(x. 1) = Q:(D)ew(x. 1),

where P,. P, and Q,. Q- are linear differential operators analogous to those defined in (9).

(¢) Connections between the integral and differential forms
Using the Luaplace transform. eqn (8) gives:

Puhk(‘l)’;hk(x-‘l) = Ql[hk(q)e-hk(x~ (1)~ (lz)

where 6,(x.¢q) and &,(x.q) are the stress and strain tensor ¢ transforms, ¢ being the
transformation parameter. while:

P:/I:A (‘I) = Z (“r):/hk(l': Ql/hk(q) = Z (hr)uhkq,‘ (13)

r=10 r=1{

Using the Laplace transform, eqns (1) and (2) give:

{ff,,(x.q) = qiu (X, DT (X ), 04

El[(x~ (/) = (l(fhk(xv ‘I)A-'l//lk(x‘ {I)v
where 17,4 (x. ¢). K, (x. ) are the Laplace ¢ transforms of H, . K. By comparing cqn
(12) with eqns (14), the tollowing refations are derived :

- |

II:/IIA(xv (/) = ‘, Ql/h/\‘(x‘l[)Pi}/l;((x‘(l)‘

_ l

k’l//lk(x‘ (I) = l[ Pl//'k(x‘q)Ql;h}t(x’ [I) (IS)

These well-known relations allow the integral form of the viscoelastic constitutive law to
be derived from the differential form.

(d) Syuthesis of various viscoclustic constitutive models
Tuble 1 gives a synthetic picture of all the coeflicients of the constitutive differential
form written, for different uniaxial viscoelastic models, in the form:

Z a0 = i b, (16)

t- 0 £ )

where 2n+ | is the number of paramcters defining the model and (§) means fth derivative.

The recursive formula given for the generalized Kelvin and Maxwell models are derived
in Appendix A,

For a multiaxial isotropic viscocluastic behaviour, two independent rheological models
governing the development of creep strains can be introduced involving the hydrostatic
part of the stress ay, and of the strain &, tensor and the deviatoric part of the stress s, and
of the strain ¢;; tensor, respectively.

The cquations governing the behaviour of the two models can be written in the
following form analogous to eqn (16) where m is the number of parameters defining the
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Tabie |. Coefficients a,. b, of the hereditary linear viscoelustic constitutive law written in the differential form eqn
(16) and relevant relaxation and creep kernels #(¢). K(¢1) of the integral form egns (1). (2) for ditferent uniaxial
viscoelastic models (27 + | = number of parameters of the model)

Constitutive law

Model type Differential form Integral form
a , b,' H(U ' K(t)
E, & = 1,8 =0 Hi) = Ei+m &
elvin .=
bop = Eiiby = my Ky = L [1-0 ™]
™ E1
E E, + E - (Eo+ ENt
£, A & =l a=T  H -Eo--———[1- Eov Eit/m 1
Kelvin- wv\/vm-c 12 & Eg* £t/
; . 1 1 -Evlim
Voigt =4 by = & ihysmy Kit) = Fo* E-1[1-e ]
. E
Kelvin- -| | | |" See the recursive n .
generalized formulae: (A12), (A1) (A14) K10 = & +%, £ [1-0 ¥ ']
o %
&
E S R "W
Maxwell 1M %o mo et H(Y = 1E,e t
bo-O b= Ky -E+ﬂ_|
1. 1 Eyt/m
E o= iamg HiY -(EO*E,)-E‘[L ] &E
Zemer 0—1 '—0 E,+ E - ———
by = Eg/my ibym ——— Kfp = — [1-6 o+ Enm]
E ™M & E+E Eo (E + E1
E
m See the recursive - E;
Maxwell '€ m formulae: n i
generalized |, ) . ._" i (A18), (A17), (A18) at 'EO'%' E [1'9 ]
E, m,

idrostatic part of the stress and strain, while » is the number ol purameters defining the
corresponding deviatoric part,

m m n

n
Ydaid =Y blells ¥ alsil = ¥ bleid, (17

=0 (= i=1 =10

where o, « and b?, b are given by the coellicients «,, b, in Table 1, respectively.

J. FUNDAMENTAL SOLUTIONS IN LINEAR ELASTICITY

A synthetic picture of the fundamental solutions of elastic homogeneous isotropic and
unbounded continua for displacements, tractions and stresses given by a unit concentrated
force F,. a unit concentrated discontinuity of displacement D, and a unit concentrated
deformation ©,,, may be organized in Table 2 (Maier et al., 1987).

In Table 2 1 is the unit vector normal to the surface T, where the concentrated
displacement discontinuity D, is imposed in the “load point™ & and n is the unit vector
normal to the surface I', where the effect (traction vector p) of a source action is evaluated
in the “ficld point™ x ; indices /. j are representitive of components of effects in x. whilc 2. 8
are indices representative of components of causes in & Analogously the upper indices
represent the effect and the cause, respectively. taking into account that the dual variables
of the cause instead of the cause variables are indicated (i.c. instead of the cause variables
F,. D,. O. the dual variables in the virtual work sense . p, ¢ are used).
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Table 2. Elastic fundamental solutions for displacements tractions and stresses in x. given by a
unit concentrated force F,. a unit concentrated discontinuity of displacement D,. and a umt
concentrated deformation ©,,. all applied in §

Source in ¢
Unit concentrated Unit conc. displ. Unit conc. strain
force F discont. O, discont. O,
I |
e ¢ iy
b 4

€

g — U w up u

8 5~ x G,' {x, 9 G,'q (x, e, [}} G,aa (x, e

K )

2

[a
»
c c
- S=%
23 2 (x, & n) G (x.enh Glap ix. & n)
o

7] ":[

o3 = G (%, @ GP ix. el Giia %, ©

& :°.~ XD*" fa L yaf

This notation allows us to have in Table 2 a symmetric index formal representation of
symmetric fundamental solutions. In particular, due to Betti's theorem (for x # §):

GH(x.8) = G (8. x), (18a)

G (x.&n1) = G x.Ln), (18b)
Gra(x.§) = G34,(8.x), (18¢)
G (x,§.n) = G (& x, 1), (18d)
GTa(x.&) = G (8. x). (18¢)
GL(x. & = G (& x.n), (18f)

where in the second members the réles of the load and ficld points &, x together with the
unit normal vectors |, u are mutually exchanged (in particular in eqns (18d), (18f) the
components of the unit vectors 1. u coincide).

In Appendix B the full expressions of all the above fundamental solutions in linear
elasticity together with their correlations are bricfly collected.

4. CORRESPONDENCE PRINCIPLE

The so-called **correspondence principle”™ (Alfrey, 1944) based on the use of the Laplace
transform (Doetsch, 1956; Ghizzetti and Ossicini, 1971) permits us to write the above
constitutive equations (6) or (11) for the homogeneous material case in a form analogous
to that usually adopted for the linear elastic law :



Fundamental solutions for linecar viscoelastic continua 2995

Table 3. Values of r and s of eqn (22a.b)
depending on the number m and n of par-
ameters defining the idrostatic and the
deviatoric part of the constitutive law

respectively
i r K
m<n 0<ism 0 i
m+i<ig<n 0 m

n+l <ign+m i—n m

n+1<ig<n i—-n n
m>n 0gign 0 i
n+l<ism i-n i

m+l<i<n+m i-n m

- — E.(q) - 7 - [ = .

Gu(X.q) = mskk(xvq) = qH (q)é(x, q) = 3K (@) (X. ). (19a)
- _ E . s 0 (5

S,,-(x. q) = meﬁ(’(,q) = qH,(q)(',,(x.q) = G,.((])e,-,-(\.q). (|9b)

In the above equations, g is the complex variable, a superposed bar denotes the transformed
variables and the following expressions hold for the cquivalent material parameters (Carini
and Gioda, 1986):

n ”

Y by | Y by

- l i - - =0
) =411 = 55— Ko =510 = 50~ (20u.b)

.

2 Z alq Z alyq' ‘

im0 t=1

m+n

iAt '
RO ,;, ! "

- ﬁl(q)+2’72(q) —"Hrn ,' (- )
B4
1;0 f

V(¢

where ¢ is the ith power of ¢.
The coefficients 4, and B, in eqns (21) are defined as follows:

A=Y, (hal —albl ) B, = ¥, bl + b)), (22a,b)

where r and s are given in Table 3.

The correspondence principle can be applied to the solution of visco-elastic stress
analysis problems, if in addition to the constitutive relations the equilibrium and com-
patibility equations, and their boundary conditions, can be transformed according to
Laplace.

In the following section, the visco-elastic fundamental solutions are derived using the
above correspondence principle and the differential form of the constitutive laws; the
adoption of the integral form, in fact, does not lead to an explicit form of the visco-elastic
solution in the absence of the explicit knowledge of Kernels H,(r), H.(1).

5. FUNDAMENTAL VISCO-ELASTIC SOLUTIONS

A synthetic picture of the visco-elastic fundamental solutions for displacements, trac-
tions and stresses given by a unit concentrated force F,H(t) (where H(r) is the Heaviside
unit step function), a unit concentrated discontinuity of displacement D} (r). and a unit
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Table 4. Vivcoelastic fundamental solutions for displacements. tractions uand stresses in x at time
¢ given by a unit concentruted force F H (1}, a unit concentrated discontinuity D, H (). and a
unit concentrated deformation @, H{r). all applied in § at ime ¢

Sourceing r

Unit concentrated  Unit conc. displ. Unit conc. strain
force £, Hir) discont. D, H (¢} discont. @4 H (1)
Ty |
eﬁa”‘*’ ) - O HE)
b.H &
§
gg x/l Ve e, gt -1 Ve g lt-n o X & £-7)
a3
@
)
2 sz
g 52 Vet VEmEnld V% kEn o
r =%
ui Te
A
g5- D v".: (!'e"ﬂ V:: h-elvt-" ':a (!.ﬁ,t-‘r)
B o

concentrated deformation @,/ (), may be organized, as for the clastic case of Scction 3
in the following Tuble 4 form.

In Table 4 the symbols have the same meaning as in Table 2 for the clastic case; in
particular Vie(x, &t —1), Vi(x. & nr—1) and Vi(x. & 1—1) are the effects (in a given
material point x at time 7) of the application of load F,H(z) (with t € 1) in terms of the
displucement component ,(x, (). of tractions p,(x, ) on the surface of normal n and of
stress components a,,(x, ¢) respectively, i.e. (using Greek and Latin symbols for “cause™
and “effect” variables respectively) :

Viox Ear—=0F,H(t) =u/(x,1),
Ve Eon 1= FH(T) = o,(x. 01, = p(x, 1), (23)

i

Vi -y H ()  =a,{x.1).

(s =1y Frr(xE L r—1) und VT (x, &, 1, ¢ — 1) are the effects (in a given material
point X at time ) in terms of the displacement component u(x, 1), of tractions p(x, ) on
the surface of normal n and of stress component o,,(x, 1) respectively, of the application of
4 unit concentrated discontinuity of displacement DLH (1), i.c.

Ve ELi—-UDLH(T  =u(x. ),
v g t—t)DLH () = o, (x. Dn, = po(x. ), 24
Vi E L t—t)DLH(T)  =0,(x.0).

Finully Vi, &r—1), Vig(x.&onr—1) and V(x. & t—1) arc the effects (in a given
material point x at time ¢) in terms of displacement component w,(x. t), of tractions p,(x, ¢)
on the surface of normal n and of stress component a,,(x. ) respectively of the application
of a unit concentrated deformation ©,,H (). i.e.
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Vig(x.§.1—1)O,H(1) = ui(x,1),

V(x5 t—1)O,4H () = 0,;(x,On; = pi(x, 1), (25)
Vig(X.§.t—=1)O,H(1) =0,(x,1).

Using the reciprocity theorem of viscoelasticity (Gurtin and Sternberg, 1962 ; Christensen,
1971) the following relations can be easily stated (for x # §):

Ve, &, t—1) = Vi, x; t—r), (26a)
vex. gl t—1) = Ve x.hn; t—-1), (26b)
Virs(x. &5 1—1) = Vig,;(§. x5 t=1), (26¢)
Vrx.&nt—1) = V2, x 1 t—1), (26d)
Vs, & t—1) = Vii(§.x; t—1), (26¢)
i t—1) = V(g x,n; t—1), (26f)

where the same remarks made for the corresponding eqns (18a)-(18f) on the exchanged
roles of the load and field points and normal unit vectors, still hold.

5.1. Viscoelastic solution Vii(x,§; t—1)
(a) Elastic solution dependent form. The Laplace transform, with respect to time ¢,
Gu(x, & q) of G (x, &) is [using eqn (B6)] :

Gi(x.8.q) = GT,"(X $) = [(3—4V)5/.+r/;f/,]}- 7N

1 { 1
16n(1 —v)Gr

Considering the elastic parameters of Giy(x, &) as functions of time and taking into account
the correspondence principle, the Laplace transform P(x, &, q) of Vi(x, &, 1) is given by :

VZ:‘(XCQ)—-G 1(%,8,9,, G,). (28)

Combining eqns (28) and (27), the following relationship between F“(x,&,¢) and
G“(x, & q) is derived :

(1=v)GI3 —4¥,)u + it

(l - V")G!'[(3 -4V)6/q + r/,"/!] ' (29)

Vex,&.q) = G(x, &, q)

Now, substituting G,e¥, given by eqns (20a) and (21) in eqn (29) and introducing the
coefficients :

(1 =v)G[36, +rurya) . —4(1 —v)Gé,,
QB —4v)o, +rr, TR (3—4v)6,.+ iil)a '

h 1 = (308.b)

eqn (29) can be written as:
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man [m~+n

ZAq ZBq

)

i h:.l =
Vax.§.q) = Ga(x.&. q)(l DG G (x.§.q) e (31)
v v Z A;‘I Z b:qu
1 _ (=10 =1
Y Bq|Y alq
i={ i=0
Let us now rewrite eqn (31) in the following more compact form:
n m4+n .
- = ZO Zﬂ M'Iq'+l
Vax.&.q) = G(x.&.q) =
Y X N3
=0 j=0
m+2n m+2n— 1|
Z Mq M 21 Ryq
= i= i ma+ln i=0
= G:’Z“(x‘ §~ (1) ,,,‘(;,, = Gll (‘ C q) - l + - Ty Wn—l T (32)
Z N,q meo.n (Irr1+m+ Z P,(]l
=) =0
where
M) = a'(hy B+ hyd), N* =b(B,— ) (33)
[ (R
L,=ZL(‘, DG 7 if 0gi<gn,
-1
net
VL= Y LY v e it n+l<i<ntm, (34)
-1
n+l
L= Z LY piejeny I n+m+l <i<m+2n,
L jml-men+i
where L = M or N and
M, N, v,
Ro= g =g =i b= )v,i‘,: (i=0,....m+2n—1). (35)

The inverse Laplace transform of V% (x,&.¢) in eqn (32), using the convolution theorem,

is:

V(& 0) = ez Gi(x,&.1)

m+

ma+ln~|

Y R

i=0

G?‘,"(x §5) X

Nm+ n

U mt2myagrty Y

c(l—.r)xk ds , (36)

m+2n— |
P!

i=1

where a, is the kth of the nt+ 2n (supposed) real and distinct roots of the equation
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m+In-1
T+ Y, Pg =0 37

i=Q

Since the values of the Viy(x.&. 1) and Giy'(x. &, 1) coincide for t = 0. the ratio M, +,/Noms 2n
in eqn (36) has to be equal to 1.

It is possible to show that this requirement is fulfilled when the elastic parameters G
and K. leading to Gi¥(x. . 1), coincide with the parameters G, and K, of the rheological
model.

Hence. eqn (36) takes the following final form:

Vax.&on =Gl (x.8.0

m+ I}

G(x.&.5) Z T e’ Onds. (38)
=V ma2mya o + Z iPal!

i=1

J* e Z; R

Equation (38) can be reduced to a simpler form taking into account that the function Giy
(x,&. 1) vanishes for ¢ < 0 and is equal to G5 (x. &) for ¢ 2 0. Then (38) takes the form:

m 2n

e 2n Z R 1k l ""‘C“"
llll(\ C t) — G:l:(\ é) | — z — i e e - a . (3())
P2yt 4 ¥ tP 20

i1

Note that coeflicients R, P; and o in eqn (39) depend only on the parameters of the
rheological model and on the distance between the loaded point and the point where the
stress components are caleulated ; therefore, they have to be evaluated only once during the
solution of the time-dependent problem,

(b) Space and time function product form. An alternative usetul form of the viscoelastic
solution Fi(x, &, 1) can be found (using the same procedure as above) as the sum of
products of functions of time and space respectively, i.e. in the form:

PG E D) = L%, 8, (1) + 49X, Eo, (1), (40)

where f17(x, &) and ¢y (x, &) are the sume functions given in Appendix B relevant to the
corresponding elastic solutions. It can be seen that the functions ¢,(¢) (i = f, ¢) arc given

m+ s
Y R
A/Im +2n me i i - C"“
l,’(l) = Nﬁ“":w I - Z T meln - 2 N (4l)
e Uma2mepr 'y Y lP,:L"

1wl

where R, and P, arc given by eqn (35) and M,, N, by eqn (34) being M ¥ and N ¥ defined
by the expressions:

for v(0):

M2 =dl(38,—44)), (42)
N3 = b{(B;— 4,), (43)

for r,(1):
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Table 5. Coeflicients M3, N*%. M, N, h,. h, for the evaluation of the viscoelastic fundamental solutions {in the
elastic solution dependent form (39)] for the 3D and 2D plane strain cases

M NS M N A, k.

Vi a/(hB,+h:A) b4B,— ) eqn (34) eqn (34)  I(fu+gmiGr -G
poow - — hyB ~h.d B, A, (fr+gim)Gr =G
Via — — h B ~h. A, B -4, Sitgh) Gl =2fTa/G
vy — — h B +h.A, B~ A, (f2+g2)G¥ ~2f8GY
vee bl (h,A,+h.B,)) g(B,~A,) eqn (34) eqn (34) friGr 97iGE
44 b!(h\A,+h,B)) (B~ 4, eqn (34) eqn (34) S G gRiGT
Vi — — B ~h.A, B —d, (/'Z‘,"n_+yi‘,",«)/G,“,"u =2 G
Vi bith A, +hB) a(B,—4) eqn (34) eqn (34) S Gy g Gy
Vi bl(h A, +h:B) a/(B,~A,) eqn (34) eqn (34) T Gl Gl Gl

Table 6. Coeflicients M. N2, M., N, h. h. for the evaluation of the viscoelastic fundamental solutions {in the
elastic solution dependent form (39)] for the 2D plane strain cases

MY NS M, v, h, h,
Vi &'t B, +h;A) h!'8B, eqn (34) eqn (34) QS +giGy gy =S DIGY
Ve — - h B+ hyd, 8 U +aIGr (g —=ST)GH
Vin — — B +hyd, B, ST+ GG (i =ST)IGn
Vi - — B +h.A, 8, ST +gDNGT (ga —1NGw
v bl A, +h,8) '8, eyn (4) cgn (34) (S +ynyaor G
VLo B +h8) '8, egn (M) eqn 34 (ST +gTNGT, gniGn
V;‘:n - - h B+ hod, B, (/:’ﬁt +ﬂ:‘:'11)/(;7:a (.‘I:‘:u —/:‘:n)/ l;:;n
Vi blhA, +h,B,) a8, cqn (34) cqn (34) { [,’,'}, + )G Gl G
Vi Wi A, +hyB) a'8B, cqn (4) egn (34) (o H )/ Gy Gl Gl
M2 =B, (44)
NY=h(B,—A4). (45)

In other words, from the comparison of eqn (40) with eqn (B6) it appears that the time
functions v,(t) and v, (1) for the Vii(x.§, 1) solution are correlated (by the correspondence
principle) to the coeflicients:

3 -4y l
(1=v)G" (1—-v)G
5.2. Viscoelastic solution V' |
(a) Elastic solution dependent form. Using the same technique as in Section 5.1(a) all
the fundamental viscoelastic solutions can be derived in the following form, analogous to

(39):

maefin- |
m e fin z R'z'k I c“k
v __ rr =0 . A
Cy=0Gr, 1= Z — ~ T il £ ros=u,pa, (46)
- - . - k
U mpryap ity Y P!

iw

where fI = | for the solutions ¥7r, 7. Vi Vig. and f# = 2 for the solutions Viy, V7,
it Vg Vi
This can be made using the elastic solutions G3(r,s = u, p, o) given in Appendix B and
the coefficients R,. P, given by eqn (35) where M, N, (or M}, N }) are given in Table 5 (for
the 3D and 2D plane strain cases) and in Table 6 (for the 2D plane stress case). The
variables «, are the roots of the equation:
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Table 7. Coefficients M3, V3. (or M,. V) for the evaluation [by eqns (43). (35)] of the functions v/(1), v (¢) of

the viscoelastic fundamental solutions [in the space and time function product form of the type eqn (42)] on the

basis of the coefficients appearing in eqns (B6)-(B8). (B28)-(B30). (B47)-(B49) of the corresponding elastic
fundamental solution

M3 NS M, N,
- J—dy
3D and 2D (plane strain) cases m a/(3B,—44)) bi(B,—A,) eqn (34) eqn (34)
—l o
(1-v)G «'B, b/(B,—4,) eqn (34) eqn (34)
[=2v
- — B;—-24, B.—A,
l—v
1
- - B, B —A,
{—v
vG . ,
I—v blA, a'(8,~4)) eqn (34) eqn (34)
G ; ,
= b8, @(B,—A)  ean(3)  eqn ()
Iy
2D (plane stress) case ;G_l @(38,—A,) b8, eqn (34) eqn (M)
l4v ,
G @4, +8) b8, eqn (34)  eqn (34)
1
P-v - - B,— 4, B,
v — — B+ A, B,
vG ”',’,-l, d,’”, eqn (34) cqn (34)
Gll+w) WA+ B) o', wn (M) cqn (34)
mkfin -0
¢+ Y Py =0 @7

i=0
(b) Space and time function product form. Using the same technique as in Section
5.1(b) all the fundamental viscoelastic solutions can be written as the sum of products of
functions of time und space, respectively, i.c. in the form:

Vs =S (0 +g0 0,0, (48)

where /7", and g{”, are the same functions given in Appendix B relevant to the corresponding
clastic solutions, and ¢,(¢) (i = /. g) are given by:

mfin-1
1
A R m+ fin Z R' A | —e™
vl(’) = P l - Z - =2 m+fin—~ | * (4|)
Nm +2n 273

=L+ By it 4 Y P!

f= |

where f# = | for the solutions V', V2, Vi, Vigy and f§ = 2 for the solutions Viy, V7,
intin Vit Vip-

In general, with reference to the generic viscoelastic fundamental solution the
cocfficicnts M} N3 (or M, N,) required in order to define time functions v,(1), v,(¢) of
the form given by eqn (40) are correlated (through the correspondence principle) to the
cocflicients of the corresponding elastic solution in eqns (B6)—(B8), (B28)-(B30) and (B47)-
(B49). This mecans that all the possible functions v,(1),v,(f) for all the viscoelastic fun-
damental solutions depends only on the six clastic coefficients relevant to the 3D and 2D
plane strain case and the six coeflicients relevant to the 2D plane stress case.

In Table 7 all the coefficients A ¥, N3 (or M., N,) for all such cases are given.
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6. CONCLUSIONS

The fundamental solutions for a unit concentrated force (Kelvin) for a unit con-
centrated displacement discontinuity (Gebbia), and for a unit concentrated deformation of
the linear viscoelastic 3D and 2D problems have been derived using the correspondence
principle.

The following remarks can be made:

(1) using the same technique. the analogous fundamental solutions can be found in
the visco-elasto-dynamic range;

(2) Kelvin's and Gebbia's fundamental solutions have proved their usefulness in the
formulations of symmetric BIE in viscoelasticity (Carini et al., 1991):

(3) using the fundamental solution for a unit concentrated deformation (besides those
by Kelvin and Gebbia) it is possible to derive variational formulations of BIE even for
visco-elastic-plastic problems.
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APPENDIX A: RECURSIVE FORMULA FOR THE GENERALIZED KELVIN AND MAXWELL
MODELS

(a) Generalized Kelvin-Voigt model
To tind the recursive formula for the model means finding the coefticients a,(n). b,(n) of the constitutive
law:

S a(met = b, (Mt . (Al)
[

o

relevant to the model of Fig. Al(b) with n paticrns when the cocflicients a,(n— 1), b,(n— 1) of the model of Fig.
Al(a) with n—=1 patterns are all known under the sume stress 6, = 0, ., = g. This will be obtained in two phases:
(1) determining the recursive formula for the model of Fig. A1, without the elastic spring ko (2) modifying the
recursive formula obtained in order to take into account the presence of spring k.

Phase 1. Let

LB n~1

Y.ar(n=1)a" = ¥, b (n— e, (A2)

(4]

be the constitutive law relevant to the nonclastic part of the model of Fig. A2(a) (deleting the spring k,). The
corresponding constitutive law in the presence of the ath pattern will be (model of Fig. A2(b)):
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a
( ) k1 kn—1
ko
Sp—y = - —*= O
M, Ma-1

&y
T [

£ agn-1) o), =27 bn-1 el

(b)
k"
Model with
Oy - O— 2n-1 = O,
parameters
Mn
[ ae

¢

I}, a(n) of) =23 bn) e,

Fig. Al. (a) The generalized 2(n— 1)+ 1 Kelvin-Voigt model; (b) the “incremented™ (by the nth
pattern) 2n+ 1 model.

Yiar(nya =Y b2 (m)ed (A3)
'] 0
and the following relations will hold :
6, = £, +Ac, (A9)
g = k,Ae+n,AL, (AS)
where
Aé =€, —E,_ . (A6)

By substitution of eqn (A6) into (AS), the following relation is denved :
0 =K {6y = a1} +1.(E,— 0 y). (A7)

The Laplace transform of eqns (A2) and (A7) give:

LEa n—1
Yiarin—1)g'd =} bt(n—1)q's, . (AB)
o 4]
G = k,(€,—E,. ) +N.q(, —E.. ). (A9)
The pre-multiplication of both members of eqn (A9) by b (n— 1)¢'. and the summation fori = 0,..., n-1 taking

into account ¢gn (A8) gives:

a=-1 A= n- |
T bt (= 1) +k,at (n—D]gd + ¥ mat(n— g *'d = ¥, kbt (n— e+ ¥, nbsn— D' * .

0

(A10)

The Laplace inverse transform of (A 10) gives:
LN

n=1 L] n-t
Tibr(n=D+kar(r—=Dlo"+ ¥, nar(n-De"* " = Y kbr(n -1l + Y, nbr(n—De* " (ALD
0 [+] a

0

from which, by comparison with eqn (A3), and forn > 1 :
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(a) ] o
[
> ) knt
Top T |
l b—

1 Ot

£ a(n-1) ol =£7' bn-1) e,

n-1

e,
[

(b) -
l
Model with ey
2n-1 Ey
parameters n
n
: T
| a
| o

£ a(n) o) =27 bn) el

Fig. A2. (a) The generalized 2(n = 1) + | Maxwell model ; (b) the “incremented™ (by the ath pattern)

2n+ | model.
a*(n) =na (n—=1)+ka®(n=1)+b*(n-1), for i=0,..., n—1, ,
b (n) = nbt. (n—1) +k.b* (1), for i=0,....n. (Al2)

This is the recursive formula of the model of Fig. Al in the absence of the spring &, when, in order to avoid
meaningful coetlicients, the following positions are considered :

at (n=1) =a?_(n—1)=0,
b2 (n~1) =b3(n—1) =0, (Al3)
b3(0) = 1.

Phase 2. The presence of the spring k,, implics, with refercnce to the constitutive law (Al), the following
relations :

b(n) = b (n),
b (n) for i=0,1,....n (A14)

a,(n) = al(n)+ P

under the obvious condition a? (1) = 0 forn > 1,
The final recursive formula of the coefficients of the constitutive law (A1) for the model of Fig. A2(b). is
given by the relations (A 14) where the starred variables are given by relations (A12)—(A13).

SAS 29:23-M
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Generalized Maxwell model
To find the recursive formula for the model means finding the coefficients a,(n). b,(n) of the constitutive law :

z a(me = z b,(n)el (A15)

relevant to the model of Fig. A2(b) with n patterns when the coefficients a,(n— 1), b,(n— 1) of the mode! of Fig.
A2(a) with n—1 patterns are all known, being ¢, = ¢,_, = &. By the adoption of the same technique as in Section
(a) the following recursive formula of the coefficients of the constitutive law (A1S5) is obtained:

a,(n) = a’(n), Al6
Bi(n) = b (n) +koa? (n). (ALS)
where the starred variables are given by the following relations, forn 2 1:
- - LY
ﬂ."(")=a"‘(n l)+a,(n 1). for i=0,....,n
k, n (Al7)
> (n— br(n-1
b (n) = bii(n=D + - (n )+a,‘_.(n—l)‘ for i=1,....n
k, A
under the conditions:
at(n—-1) =ay(n-1)=0,
bin=1) =b3(n—-1) =0, (A18)

a3(0) = 1.

APPENDIX B: FUNDAMENTAL SOLUTIONS IN LINEAR ELASTICITY AND THEIR
CORRELATIONS

(a) Kelvin fundamental solutions (for a unit concentrated force)

These solutions refer to the case of a concentrated load (whose components are £, j=1,2.3) in a given
material point § of a 31 clastic homogencous and isotropic unbounded continuum.

Let Grex. §), GRi(x &) and G (x, §) be the effects (in a given material point x) of the load application in
terms of the displacement component «,(x), ol tractions p,(x) on the surtace of normal n and of stress component
a,, respectively, e (using Greek and Latin symbols for “cause™ and “effect”” variables respectively) :

G F, = u(x), (B1)
GR(x.§omF, =a,(<)n, = p(x). (82)
1,1(‘ ¢)I = al/(‘) (83)

Obvious relations between the above Kelvin fundamental solutions are :
GhUx,§on) = Glo(x. §n,. (B4)

G
G 8 = GO, (x. D+ G (. ]+ G'.".‘/.(‘ 03, (B5)

The full expressions of the above solutions are the following (Banerjee and Butterfield, 1981, Brebbia er af.,
1984) :

1
GR(x. Q) = f r(x ¢)+ )G ga(x.3), (B6)
Gr(x.§.n) = — gi'(x.§.n), (87)
. l-" |
Gh(x.§) = i m(x. 8+ "‘—9 n(x.8), (B8)
where
r,= R L P =, (B9)
r
and, for the 3D-case:
S8 = T6nr (B1O)
gex.) = (B11)

l(mr'
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fRx80) = fl(x.On,. (B12)
gr(x.8.m) = gn(x.$)n,. (B13)
! - <
(X3 = — 8—7"-:(r,¢§,,+r,o,,—r,o,,). (B14)
3
g% Q) = 8art il (B1S)
while for the 2D-plane strain case:
fax$) = ——ln(')du (B16)
) l B17)
ga(x.{) = rLglat (
2x8on) = fIa(x,On,. (B18)
ga(x.§.n) = gin(x,{in,. (B19)
S = - ——(r Su+riby—r,é,). (B20)
l
gn(x.) = - Sop T (B21)

Finally, for the 2D-planc stress case the saume relations for the 2D-plane strain case hold, when the Poisson
ratio v is substituted with:

v
. _ 0
ey (B22)

(b) Gebbia fundamental solutions ( for a unit concentrated displacement discontinuity)

These solutions refer to the case of a concentrated displacement discontinuity (whose components are D),
j = 1,2,3) in a given material point § (crossing a surface T with normal 1) of a 3D clastic homogencous ind
isotropic unbounded continuum,

Let Gr(x, &0, G7(x.§.n. 1) and G7(x, §.1) be the effects (in a given material point x) of the load application
in terms of the displacement component i,(x), of tructions p,(x) on the surface of normal n and of stress component
a,,(x) respectively, i.e. (using Greek and Latin symbols for “cause™ and “effect” variables, respectively) :

G(.§ND, = u(x), (B23)
G?(x. &0 )D, = a,(x)n, = p,(x). (B24)
Gr(x.&.)D, = a,(x). (B2S)

Obvious relations between the above Gebbia fundumental solutions are:
Grr(x. &nl) = G(x. & n,, (B26)

2Gv
G 4D = GIGY, (x.3. N+ G%, (x. & D]+ —— =3 GLux.3.1é,. (B27)

The full expressions of the ubove solutions are the following (Gebbia, 1881, 1902, 1904) :

-2

Ge(x. 8.l = !l—j!ff‘f(x.C.l)-k ll_vyf.’(x,t.l). (B28)

G
Gr(x.§.nl) = —-——f (x.§.n, I)+ — ,,’(x al), (B29)

G
Glh(x. ) = ~— f.’,’l(x D+ !—_—;_y‘,',’.(x- .0, (B30)

where for the 3D-casc:

S8 = A= 7@ = ,(r S, +r,0,—r 8., (B31)

gi(x.¢.D =gl x.1) = 7§ x)], = —}—’.’,’J (B32)
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Irixéoah = 8. hn,
gr(x.§.a.h) = g7 (x.§.hn,

. -1 . . . <
SR8 = o (20,0, + 20,0, — 30,6, ~30,,r r — 38,7 .r,

—30,,r . r 30,1 r, +60ur.r, +60,r,r ).

l - . :
grix. gl = ,(0,,&,4-0,“:) s — 00, +30ur ., +38,rr  —15r.r ror M.
while for the 2D-plane strain case:

I .
TEEN == (rid, +r.00—r du .
dnr

() = —l—r i af il

AL el = f(x8.hn, =0,

g &om ) =gl (x.{.hn,

| .
GG = s (0,0, + 8,3, — 8,8, + 20,7 7 420, r0r s = Bror ror .
2art

(B33)

(B34

(B35)

(B36)

(B37)

(B38)

{B3%)

(B40)

(B4

Finally, for the 2D-plane stress case the same relations for the 2D-plane strain case hold, when the Poisson ratio

v is substituted with v* given by eqn (822

(¢} Fundamental salutions ( for o unit concentrated deformation)

These solutions refer to the case of a concentrated deformation (whose components are @, . i, j = 1,

2.Nin

i given material point & (crossing a surface I' with noemad 1) of a 3D elastic homogeneous and isotropic unbounded

continuum.

Let Ginx $). GRadx. &, n) and G74(x, ) the effects (at a given material point x) of the load application in
terms of the displacement component ,(x), of tractions p,{x} on the surfuce of normal o and of stress component

a,,(x) respectively, e, (using Greek and Latin symbols for “cause™ and “effect™ variables, respectivety):

Gralx. 90, = u(x),
Gmt(x~ f- n}exﬂ = a;,:(x)ﬂ/ = P,(“).
G804 = 0,(x).

Obvious relations between the above fundamental solutions are:

Gra(x. E.n) = G oy(x. O3,

G .
G:’;’;ﬂ(‘v :) G[Gmd,(‘v ¢)+Gmm("' ¢)]+ hd/k(xud)bu'
The full expressions of the above solutions are the following

G 8) = T S0, O+ ).
G
Gix. &) = f_-v-f.,m R )

G
Gla(x.§) = f?{ia(" D+ gia(x.8).

where for the 3D-case:

. [
Jalx 8 =[x} = Py Bra+65r, =840

3
G (8.8 = (8. X) = ——=r,rgar
I[r

ST Emy = f(x. {n,

ahm(x.&.m) = ginu(x.5Hin,.

(B42)
(B43)
(B44)

(B45)

(B46)

(B47)

(B48)

(B49)

(B50)

(B51)

(B52)

(B53)



Fundamental solutions for linear viscoelastic continua

1 .
(%8} = — rome (20,0, + 23,05, —30,,0,4~ 30,7 47, =~ 30,7 4,

— 3,4, —30,47 .7 60,1 r, +65,r 7).

1
gap(x.8) = 3;‘;3(6.:6;', +5,,6,, —-5,,5,, +3‘5w"’, "-‘35:,*’ s l5’,’,’ W)

and for the 2D-plane strain case:

1 <
500 = SBEX) = (bt r Syt r S,
T l
g:p(xc ¢) = y.m(gv X) = z—n;”l"lr 1.0

i dn) = fx.n, =0,

galx.§.n) = g (x. {Hn,,

1
Irs(x.8) = pre (000,5+0,,05—0,,8,4+20,r . ry+20,4r,r, —8r.r,r.ry).
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(B54)

(B55)

(B36)

(B57)

(B38)

(B39}

(B60)

Finally, for the 2D-plane stress case the same relations for the 2D-plane strain case hold, when the Poisson ratio

v is substituted with v* given by eqn (B22).



