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Ahstract-Th.: full set of fundam.:ntal solutions for the line;lr viscoelastic problem is derived
from the relevant clastic fundamental solutions using the well-known so-calkd "correspondence
principle". Th.: fundamental solutions are given for the 3D-continuum. the 2D-plane strain and the
2D-plane stress probkm using a wide range of linear viscoelastic constitutive law models.

Finally. lhe pllssihk nelds of applieation of the determined fundamental solutions arc given
using symmetric HIE f,'rlllulations in space and lime.

I. INTRODUCTION

The problem ofdetermining the response of a viscoelastic body under given time-dependent
loads has been tackled with a number of methods depending on the numerical technique
and the representation of the eonstitutivc model adopted.

After the first formulations of the viscoelastic problem by Boltzmann (I X74) (for
a 3D isotropic continuulll) and by Volterra (190'). 1913) (for anisotropic solids). the
correspondence principle of Alfrey (1944, 1945) gave. through the Laplaee transform
technique (Doetsch, 1956; Ghizzelli and Ossicini, 1971), a formal method widely and
sueeessfully adopted oy Lee (1955), Mandel (1955) and others (Tsien. 1950; Radok, 1957;
Lee, 195X; Naghdi and Orthwcin. 1960; Tao, 1963; Rogers and Lee. 1964; Herrera and
GUrlin, 1964; Graham, 196X; Rizzo and Shippy. 1971; Carpenter, 1972; Graham and
Sabin, 1973) to derive the viscoelastic solution of a problem when the corresponding clastic
solution is available in dosed form.

Then. in connection with the evolution of the numerical solution techniques for clastic
problems, the step by step time integration together with the tinite element space-dis
eretization methods were adopted by a number of authors (White, 1958; Zienkiewicz ef al.•
1968; Webber, 1969; Taylor ef al., 1970; Cameron and McKee. 1981).

In the same period another trend of studies [mainly developed by Biot (1955). Gurtin
(1963). Schapery (1964). Leitman (1966). Christensen (1968), Tonti (1973). Reddy (1976)
and Reddy and Rasmussen (19X2)] was devoted to the formulation of the same problem
in variational terms in space and time.

More recently. in connection with the development of the theory of the boundary
integral equations (BI E) for elastic eontinua (Brebbia ef al.. 1984), another ,lpproach
was adopted for viscoelastic problems using the correspondence principle (Banerjee and
BUllerfield. 1981; Kusama and Mitsui. 1982; Shinokawa el al.. 1985; Wolf and Darbre.
19X5; Sun and Hsiao, 1985; Tanaka. 19X5; Carini and Gioda. 1986).

In the context of the HIE method. recent contributions for clastic (Sirtori, 1979;
Polizzollo, 1988a,b) and elastoplastic (Maier and Polizzollo, 1987; Polizzollo. 1988a,b)
continua and for the steady-state heat conduction problem (Costabel. 1987) allowed. by
the variational methods adopted for the viscoelastic problems, to attain even under a HIE
approach a variational formulation in space and time of linear time dependent problems
like transient heat conduction (Carini ef al.. 199Ia.b). elastodynamics (Maier cf al.• 1991),
viscoclaslicity (Carini ('I al., 1991 a.b), etc.
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In the above contributions. Gebbia's (1891. 1902. (904) fundamental solution for a
unit concentrated displacement discontinuity (besides the well-known solution for a unit
concentrated force due to Kelvin) was required to find the BIE elastic symmetric for
mulation; analogously. the fundamental solutions for a unit concentrated displacement
discontinuity and for a unit concentrated deformation were required for the corresponding
elastoplastic symmetric formulation.

In this context the aim of the present paper is to find. in the viscoelastic range. the
fundamental solutions corresponding to the above elastic solutions as a contribution to the
development of variational formulations of the viscoelasticity in space and time by BIE
approach. Moreover. these solutions are also going to prove their usefulness for the vari
ational. formulations of visco-elasto-plastic continua.

In Section 2. after a brief summary of the classical representations of the hereditary
linear viscoelastic constitutive laws in integral and differential form. the recursive formula
for the coefficients of the differential form for the generalized Kelvin and Maxwell models
are derived (Appendix A).

Section 3 is devoted to the description of the correlations between the elastic fun
damental solutions. which are collected. from a scattered literature. in a compact form in
Appendix B.

Finally. in Section 5. using the correspondence principle (described in Section 4). the
viscoelastic fundamental solutions arc derived using the differential form of representation
of the constitutive laws.

:!. llEREDITARY LINEAR VISCOELASTIC CONSTITUTIVE LAW

The two classical representations of the hereditary linear viscoelastic constitutive law
(Gurtin and Sternberg. 1%2: Mandel. 1%6: Christensen. 1971) used in the following. arc
summarized here:

(a) II/ft'yraljimll

A classical representation at time t of the above law in the integral form is the following:

O',,(X.f) = JI,lh'<X.t)'t;hk(X.O)+f
'

Hilhk(x,t-r)dt;hk(x.r).
lJ

( I)

where 0"1' 1:1t•• JI"hk arc the stress tensor. strain tensor and relaxation viscous kernel tensor,
n:spectively. ! being the integration variable. An equivalent form. derived from (I) by
integration by parts is:

( la)

The inverse constitutive law has the following corresponding forms:

(2)

(2a)

where K"h' is the creep viscous kernel tensor.
The symmetry of the stress and strain tensors implies:
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{
H'/hdX' t) = HJlhk(X. t) = Hi/kh(X. t).

K'/hk(X, t) = Kj'hdx. t) = K'jkh(X. t).

1991

(3)

while for isotropic materials the following expression of the relaxation kernel Hijhk(X. t)
holds:

HI (x. t) and H 2 (x. t) being the so-called tangential and volumetric relaxation functions.
respectively.

Using the stress and strain deviators Sij. eij •

the above constitutive law for isotropic materials takes the direct form

l
S;;(X./) = H1(x. t)e;;(X.O) + J: HI(X.I-r)deij(x.r).

rTu(x.1) = H~(X.t)l:kk(X.O)+ J: 1I~(x.l-r)df.kdx.r).

or the inverse form

1
",,(x. I) ~ K, (x. I)"" (x.O)+ J.: ~~(x. t - f) d.,,, (x. fl.

l'kk(X./) - A:~(X.t)rTH(X,O)+ f K~(x.t-r)dQ'kk(x,r).
In

(5)

(6a.b)

(7a,b)

where K I (x, I) and I\~(x. I) ~Ire the so-called tangential and volumetric creep functions
corresponding to the analogous H I and fI ~ functions given above.

For homogeneous materials the relaxation (H ,. H~) and creep (1\1' K~) functions an:
space independent.

For isotropic materials the following have to be added to the above symmetry relations
[eqn (3») :

(3a)

(b) Differential furm
A classical representation of the hereditary linear viscoelastic constitutive law in differ

ential form is the following:

(8)

where. using the notation adopted by Alfrey (1945), Pi/hk(D) and Qijhk(D) are tensors of
linear differential operators. i.e. :

. .
p,//,dO) = L (a')'//'k O '; Q'/hk(O) = L (h,)ijhk D'.

, ... 0 r-O

(9)

where the components of the tensors (a,)i/hk and (h');;/'k are real constants and D k is the
operator "kth derivative", i.e. :
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For isotropic materials. eqn (8) specializes in the following two relations to:

{
PdD)SI/(X.t) = QI(D)eIj(x.t).

P~(D)(hdx. t) = Q~(D)f:kdx. t).

( 10)

(1Ia.b)

where PI' P~ and Q I. Q~ are linear differential operators analogous to those defined in (9).

(c) COl/l/ccliolls hCl\I't'cl/ lhc illlcgra/and dUferenlia/forms
Using the Laplace transform. eqn (8) gives:

( 12)

where cT,/(x.q) and F.i/(x.q) are the stress and strain tensor t transforms. q being the
transformation parameter. while:

[',/".eq) = L (a,),/"kq':
r-coon

Qi/I,dq) = L (h')lJhkq'.
r= n

(13)

Using the Laplace transform. eqns (I) and (2) give:

{ ~I/(X'I/) ~ q~I,d~.q)/?""dx.q).
1'1/ (x.q) - qrT"dx. Ifll\""dx. II).

(14 )

where 11"hk(x.I/l. K,/hk(X.q) arc the Laplal.:e I transforms of II'/hk' Ki /hk . By comparing eqn
(12) with eqns (14). the following relations arc derived:

( 15)

These well-known relations allow the integral form of the viscoelastic constitutive law to
be derived from the dill'crential form.

(d) SYl/thcsis oj'l'ariol/.\·l'iscoe/aslic cOlls/ill/lil'C modcls
Table I gives a synthetil.: pil.:ture of all the coellicients of the constitutive differential

form written. for ditl'crent uniaxial viscoelastic models. in the form:

" "L a,rT(1) = L h,I;II).
I'" n ,_ 0

( 16)

where 21/ + I is the number of parameters defining the model and (i) means ith derivative.
The rCl.:ursive formula given for the generalized Kelvin and Maxwell models are derived

in Appendix A.
For a multiaxial isotropic viscoelastic bchaviour. two independent rheological models

governing the development of creep strains can be introduced involving the hydrostatic
part of the stress (fu and of the strain I:H tensor and the deviatoric part of the stress Sij and
of the strain C,/ tensor. respectively.

The equations governing the behaviour of the two models can be written in the
following form analogous to eqn (16) where m is the number of parameters defining the
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Table I. Coefficients a,. b, of the hereditary linear viscoelastic constitutive law written in the differential form eqn
(16) and relevant relaxation and creep kernels H(t). K(I) of the integral form eqns (I). (~) for different uniaxial

viscoelastic models (:!n + I = number of parameters of the modd)

Model type

Constitutive law

Differential form Integral form

H(t) • K(rJ8; b;

E, 110 -1 ; 8, -0

0 bo - E,; b, - 1\1
1\,

E, Eo + E, 1\,

~
110 ----;81·-

E, Eo

1\1 bo - E, : b,-"Il

Kelvin

Kelvin
Voigt

Ej
- - t

n 1\"
-Eo-IE; [l-e '

I'

[
-El t 1"11 ]

- (EO + E,) - E, 1 - e
EoE1E • t__1_ + ~1 [1 _e lEo + E

1
) 1\1 J

Eo + E, EO IEo+ E,)

H(rJ

H(rJ 

K(rJ

H(rJ

1((rJ

See the recursive E;
1 n 1 [ --t]formulae: IA121. (A131. IA14) K(t) - - + I - 1 - e 1\;
Eo ,'E 1

E1
--t

E
1\,

1 e
1 t

- E1 + "11

E1 1\1 110 _l.. 1
Maxwell

o-vvv--+o 1\1
;8,- E,

bo - 0 ; b,-l

Eo _l.. 1

~
110

1\, ;81- E,

Zemer Eo+ E1
bo - Eo !"I1 ;b1 -

E1E1 1\1

Eo

Maxwell~ See the recursive
formulae:

generalized~ (A161. (A17). (A18)

En 1\n

Kelvin
generalized

idrostatie p'lrt of the stress and strain. while" is the number or parameters defining the
corresponding deviatoric part,

ttl nr " n

I tl,' oW = I h~itl; L tl,'sl:l = L h;'ej:l.
,. (J I""' (J , .... () t= ()

( (7)

where tI:, tt,' and h~. h;' are given by the coellicients CI" h I in Table I. respectively.

3. FUNDAMENTAL SOLUTIONS IN L1~EAR ELASTICITY

A synthetic picture of the fundamental solutions of elastic homogeneous isotropic and
unbounded continua for displacements, tractions and stresses given by a unit concentrated
force F•. a unit concentrated discontinuity of displacement D., and a unit concentrated
deformation 0.//. may be organized in Table 2 (Maier et ClI.• 1987).

In Table 2 I is the unit vector normal to the surface r, where the concentrated
displacement discontinuity D. is imposed in the "load point" ~ and n is the unit vector
normal to the surface r, where the effect (traction vector p) of a source action is evalu'lted
in the "field point" x; indices i. j arc representative of components of effects in x. while 0(, fJ
are indices representative of components of causes in ~. Analogously the upper indices
represent the effect and the cause, respectively. taking into account that the dual variables
of the cause instead of the cause variables are indicated (i.e. instead of the cause variables
F•. D•• 0,/1' the dual variables in the virtual work sense II. p. (J are used).
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Table 2. Elastic fundamental solutions for displacements tractions and stresses in x. given by a
unit concentrated force F•. a unit concentrated discontinuity of displacement D•. and a unit

concentrated deformation 0,~. all applied in ~

Source in E

Unit concentrated
force F..

cQ)

xlUiE_
Gi":: lx, EJQ)..!S

~ :r
~
0

Ie

*
.= c:

0-.. .- Ie Gt':: lx, t n)...
g~.!!

ijj l- re

<tl ~Ii<tl- G"uQ)..!S Ot- lx, El::: :=:a ,..
VI b

X

Unit conc. displ.
discont. D..

r. I

~..

Gi': lx, til

Gt': lx, t n, II

Unit conc. strain
discont. Srsl'

Gi4 (x, EJ

Gf':r. lx, t n)

This notation allows us to have in Table :2 a symmetric index formal representation of
symmetric fundamental solutions. In particular, due to Betti's theorem (for x # ~):

G:'~'(x,~) = G~:'(~, x),

Gr!'(x,~,n,l) = G;I'(~, x,l, n),

G7':Il(x.~) = G~;',,(~, x),

G:~'(x,~, n) = G~:'(~, x,l),

G7;~(x,~) = G~7J(~' x),

G7f,(x. ~,I) = G~;j(~, x. n),

(I gal

(I gb)

(I gc)

( 18d)

( 18e)

(181' )

where in the second members the roles of the load and field points ~' x together with the
unit normal vectors I, u are mutually exchanged (in particular in eqns (18d), (18f) the
components of thc unit vcctors I, u coincide).

In Appendix 8 the full expressions of all the above fundamental solutions in linear
elasticity togethcr with their correlations are briefly collected.

4. CORRESPONDENCE PRINCIPLE

The so-called "correspondence principlc" (Alfrey. 1944) based on the use of the Laplace
transform (Doetsch, 1956; Ghizzetti and Ossicini, (971) permits us to write the above
constitutive equations (6) or (II) for the homogeneous material case in a form analogous
to that usually adopted for the linear elastic law:
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Table 3. Values of rand s of cqn (22a.b)
depending on the number m and n of par
ameters defining the idrostatic and the
deviatoric part of the constitutive law

respectively

r s

m<n O~i~m 0 i
m+l~i~n 0 m
n+l~i~n+m i-n m

m = n o~ i ~ n 0
n+l~i~2n i-n n

m > n o~ i ~ n 0
n+l~i~m i-n
m+l~i~n+m i-n m

2995

cTu(x. q) = I !;~:~q) €u(x. 'I) = qR~(q)€u(x, 'I) = 3K,.(q)€kdx,q), (19a)

- ( )- E,.(q) - ( )_ H- (). ( )-"G-()- (. ) (19b)Slj x. q - I _( ) e;j x, 'I - 'I I 'I (ij X, 'I - - •. 'I ei; x. 'I .+ v,. 'I

(n the above equations. 'I is the complex variable. a superposed bar denotes the transformed
variables and the following expressions hold for the equivalent material parameters (Carini
and Gioda, 1986):

n m

L h:/qi L h:'t/

G 'I - I i-I) - P - I.-I)
('I) = -If, ('I) = _. _._-~... " K (tl) = /I ,(tl)=~ ...
"2 2 n," 3' 3 "',L: a;lq' . La:'q'

i- 0 ,- (I

m+n

n R L' A,q'
_ 2('1)- 1('1) ,·0
vv(q) = R I ('I) +2l/2(q) = '-",+~n--i

L, B,q
;·0

where 'II is the ith power of q.
The coefficients Ai and B, in eqns (21) are defined as follows:

J .r

A; = L(h7a1-j-a7h1-j); Hi = Lj(2h7a1-j+t~b;l_j)'

(20a,b)

(21 )

(22a.b)

where rand S are given in Table 3.
The correspondence principle can be applied to the solution of visco-elastic stress

analysis problems, if in addition to the constitutive relations the equilibrium and com
patibility equations, and their boundary conditions, can be transformed according to
Laplace.

(n the following section, the visco-elastic fundamental solutions are derived using the
above correspondence principle and the ditTerential form of the constitutive laws; the
adoption of the integral form, in fact, does not lead to an explicit form of the visco-elastic
solution in the absence of the explicit knowledge of Kernels HI (I), H ~«().

5. FUNDAMENTAL VISCO-ELASTIC SOLUTIONS

A synthetic picture of the visco-elastic fundamental solutions for displacements, trac
tions and stresses given by a unit concentrated force F.H(t) (where H(t) is the Heaviside
unit step function), a unit concentrated discontinuity of displacement D~H(t). and a unit
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Table~. Viscot'!a.'lic fundamental solutions for displacements. tractions and stresscs in x at lime
l given by a unit concentrated force F,H(t). a unit concentrated discontinuity D,H(/). and a

unit concentrated deformation e,dH(t). all applied in .: at time t

Source in t T

Unit concentrated
force F. H (T)

C
tI .IUiE-;: V;': lx, Eot -T)tI -u.!S-a ~-...
is

...

*
iii c_
.5 0 ... Vt:: (x, t n, t - Tl
~

':; M
~~

:z:: .=Cl
w r e

...... ..t!ii... - V;: lx, Eo t -Tl~~.. Dt-en!:> •

Unit cone. displ.
discont. D. HIT)

r, I

~.H(TI

11;": (x. Eo I, t - Tl

v/': lx, t n, I. t - T)

V;: lx, tl, t-TI

Unit cone. strain
discont. Baa H tTl

V::. lx, t n, t -T)

V;~ (x, Eo t-TI

concentrated deformation 0'IIII(r). may be organized. as for the elastic case of Section 3
in the following Table 4 form.

In Table 4 the symbols have the same meaning as in Table 2 for the elastic case; in
particular V:~'(x. ~.I- r). V:;'(x.~.n.l- r) and V7;~(x. ~.I- r) arc the clfects (in a given
material point x at time I) of the application of load FJI(r) (with r ::;; I) in terms of the
displacement component 1I,(X./). of tractions p.(X./) on the surl~lce of normal n and of
strcss components 11,/(X, t) rcspectively. i.e. (using Grcek and Latin symbols for "causc"
and "ellcct" variabks respectively) :

{
Vi';,(x'~'I-r)F.f1(r) =II,(X.t).

V:~:(x.. ;;,11,.1- ~)F.H(r) : (1'l(X, I)U} = 1', (X. I).

V",(x.;;.I-r)F.II(r) -I1,/(X,t).

(23)

V~~·(X. ~.I.t - r). V!,;(x.~.n. I, 1- r) and V7i.(x. ~.I, 1- r) arc the clfects (in a given m'lterial
point x at time l) in terms of the displaccment component II,(X./). of twctions p,(X./) on
the surface of normal n and of stress component (1,,(x, t) respectively, of the application of
a unit concentrull:d discontinuity or displacement D~H(r). i.e.

{

V:;(x.~.I.t-r)D~f1(r) = II.{X./).

V:~'(x.;;.n.l.t-r)D~II(r)= l1ij(X./)ll j = Pi(X./).

V7:~(x, ;;,I.t-r)D~II(r) = l1 i /(X,/).

(24)

Finally V:';;,(x.;;.I-r), V:~'iI(x,;;,n.l-r) and V7j~ll(x.;;.I-r) arc the effects (in a given
material point x at time t) in terms of displacement component II,(X./), or tractions (',(x. t)

on the surface or normal n and of stress component (1i/(X./) respectively of the application
ora unit concentrated deformation e'IIH(r), i.e.
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{

V~:/I(X,~, l-f)E>./IH(r) = Uj(X, I),

V~(X.~.n. l-f~E>'/IH(f) : O'ij(X, I)nj =Pi(X, I),

V'Jd(X.~.I-f)E>'/IH(f) - O'ij(X,I).

2997

(25)

Using the reciprocity theorem of viscoelasticity (Gurtin and Sternberg, 1962; Christensen.
1971) the following relations can be easily stated (for x "" ~) :

V7:(x.~; I-f) = V;7(~,X; I-f),

Vf:(x.~.n.l; I-f) = V:r<~,x,I,n; I-f),

Vf;/I(X'~; I-f) = V:;ij(~'X; I-f),

Vf:(x.~,n; I-f) = V;f(~,x,l; I-f),

V7j~(X'~; I-f) = V~(~,x; I-f),

V7r.(x.~.I; I-f) = V:;j(~,x,n; I-f),

(26a)

(26b)

(26c)

(26d)

(26e)

(26f)

where the same remarks made for the corresponding eqns (18a)-(l8f) on the exchanged
roles of the load and field points and normal unit vectors, still hold.

5.1. Viscoelaslic.wllllion V::(x.~; I-f)
(a) Elaslic solulion dependenl form. The Laplace transform, with respect to time I.

G7.U(x,~, if) of G7.U(x.~) is [using eqn (86)] :

(27)

Considering the clastic parameters of G7:(x,~) as functions of time and taking into account
the correspondence principle, the Laplace transform J7::,(x,~,q) of V7:(x,~, I) is given by:

- I ~
V7:(x.~, 'I) = - G7:(x,~, vv, vv)'

'I
(28)

Combining eqns (28) and (27), the following relationship between V::,(x,~, 'I) and
C7:(x,~, 'I) is derived:

(29)

Now, substituting C,ev,. given by eqns (20a) and (21) in eqn (29) and introducing the
coefficients:

h,=(I-v)G[3<>j~+r/lr/~];h2= -4(l-v)Gc5i~,

(3 - 4V)<>i' + rljr/~ (3 - 4v)c5i~ + rlir/~

eqn (29) can be written as:

(30a.b)
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(31 )

Let us now rewrite eqn (31) in the following more compact form:

n m+n

I I M,~q;+j

r7uu ( . l' ) _ G-""( l' ) _;-_0-,--/-_0 _
... i~ x. .,.q - 12 x..... q II m+"

I I N,~q;+j

i- 0 j- °

"'t!n M;qi . l m+I- I R,q' l
:: G""(x l' (,7) i=O :: G""(x l' q)~{m+z" I + ------'-:-~---------.

'-'2 , ".. m ... 2n 1'2" ".. N m + ~,,-- I ..

I Niq' m+ z" q"'+ Zn + I P,q'
, ... 0 1= ()

where

(32)

(33)

,. I

L, = I L~ 11.(1 I' Ii
I-I

",'
L, = I Lt,- 1),(, It II

1- I

" • I

if 0 ~ i ~ II,

if 11+ I:::; i ~ 1/+111, (34)

L,=
j_l_m_n+i

L0- 1i.(i-}+I) if n+m+1 :::;i~m+2I/,

where L = M or Nand

M, N, N,
R,:= -- - -~~; P, := (i:: 0, ... ,111+21/-1).

M", + 2n Nm + 1" N", + 1"

(35)

The inverse Laplace transform of V~:(x.~,q) in eqn (32), using the convolution theorem,
is:

VU
"( 1') M", .. 2n lG""( l' )'2 X,,,,t = -N- ;:z X,,-,l

nt+ 2"

",+2n-1 l
" R",'I m+ ~n L' k

+i G""(X l' s) " i- 0 .. eft-r», ds'2 ,,'Il. L.- m+2,,-1 '

o <_I (m+211)",;;,+Z"-I+ I iP,,,,~-1
j.", I

where elk is the kth of the m + 2n (supposed) real and distinct roots of the equation

(36)
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"' .... =n - 1

q"'+:n + L Pit! = o.
i.,.. 0

1999

(37)

Since the values of the V7: (x. ~. I) and G~· (x. ~. I) coincide for I = O. the ratio ,\/", + en! N", +:n
in eqn (36) has to be equal to 1.

It is possible to show that this requirement is fulfilled when the elastic parameters G
and K. leading to G~:(x.~. f). coincide with the parameters Gil and Ku of the rheological
model.

Hence. eqn (36) takes the following final form:

(38)

Equation (38) can be reduced to a simpler form taking into account that the function G:~'

(x.~. f) vanishes for 1< 0 and is equal to G:~'(x.~) for I ~ O. Then (38) takes the form:

Note that coeflicients R,. Pi and (Xk in eqn (9) depend only on the parameters of the
rheological model and on the distance between thc loaded point and the point where the
stress components arc calculated; therefore. they have to be evaluated only once during the
solution of the time-dependent problem.

(b) Spun' u"c/ lillie jill/cfiu" proc/IICffurll/. An alternative useful form of the viscoelastic
solution V:::(x.~. t) can be found (using the same procedure as above) as the sum of
products of fUllctions of time and space resp~'Ctivcly. i.e. in the form:

(40)

where f:·~'(x.~) and g:~'(x.~) arc the same functions given in Appendix B relevant to the
corresponding ebstic solutions. It ean be seen that the functions dt) (i = j: g) arc given
by

(41 )

where R, and P, arc given by eqn (35) and M,. N, by eqn (34) being Mt! and N,; defined
by the expressions:

for l'(/) :

{
Mti =d/(3Bj -4A j ).

Nt; =M(Bj-Aj ).

(42)

(43)
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Table 5. Coefficients ."f~. N,~. Jf,. N,. h,. h, for the e\aluation of the viscoelastic fundamental solutions [in the
elastic solution dependent fonn (391] for the 3D and 10 plane strain cases

.\f~ .V,~ .\f ....., h, h,

V~:l1f ct.(h, B, +h,A,) iI.(8,-.·U eqn(}4) eqn (34) 3U~: +ff.,"),G~: -41=':G~14

V:; h,8.-h,A, 8,-..1, U:':+g~")'G;, -2f;:/G~tI
V.,.., h,8.-h,A, 8,-..1, (f7,~ +g7,~)!'G~~ - 2f~r~/G~/~,,,
V~: h,8,_h,A, B,-A, U':: +rI::)!G~: -2f7:/G::
Vf': b7(h,A,+h:B,) tt:(B,-A,) eqnl~4, eqn (34) f;:/G[':' q'::/Gf:
V"P b7(h, AJ +h:8,) tt:(B, - A,) eqn (~4) eqn (34) f~::,G~:: 1I7~iG7::,,,
V::'li h,B,-h,A, B,-A, U:';p +.'I~~):G:-;y - 2f~~ji'G:~"J1

V::D iI.(h,A,+h:B,) tt:(B,-A,) eqn (~4) eqn (34) f~p/G~d ,lI~~/G~p

J-7,:tJ b7(h,A.,+h,8,) tt:(B,- A,) eqn (34) eqn (34) 1'7,:tJ/'G~/:tI g~,:fJ /G7,:(1

Table 6. Coefficicnts M~. N~ . .\1,. N,. h ,. h, for the c\aluation of thc viscoclastic fundamcntal solutions [in the
elastic solution dependent fonn (39») for the 1D planc strain cases

v:~

v~ h;/(J""',+h~H/)

V~~ h;IU11A,+h:1l,)

V:~"11

VI;;, h:'(!t, tI, +h, /1,)
V~,"~ h;'(!t, A, + !t:Il,)

N,~ ,\1, N, h, h,

h:'B, cqn (~4) eqn (34) (3/7.." +lI~,U)/G~: (9:7 -17'JU)/G~'Iu

h,B,+h,A, B, U~" +.t!f:')/Gr," (.'I~" -fr.;')/Gr.;'
h,B, ... ",.·/, B, {f7,~ +G7;~)/G7,~ (.'17;" -f7:~)/G7/1~

/r,B, +Ir,.·/, B, cr:,: +,(1:':)/<1;': (,q:,:-l:':)/G:':
eI.'B, elln 1:14) clln (34) (/;:' +.tlf~)/(i;: Yf':/Gf':
a:'/I, cqn <.14) cllll (34) (f7~, +,lI7';.)/G7::a .ll~/G7';.

h,/J,+h,A, 8, U:'~, +(J:'~,)/G~i, tl/7;,f -1:~,)/G~'X~1

a;'Il, clln (4) cqll (.'4) (l~~, +.'Ir,~,)!(jr,~1 .I/~~';(i~,

a;'Il, C'I1l (.'4) cllll (.'4) (l~':JI +.lI::'~/I)/G~:JI .I/~'''I,/(j:·~11

(44)

(45)

In other words. from the comparison of eqn (40) with eqn (86) it appears that the time
functions vI(t) and v.,(t) for the V7;(x,~, t) solution are correlated (by the correspondence
principle) to the coellicients:

3-4\'
(l-v)C'

1
--_ .. _.._--

(I-I')C'

5.2. Viscoelastic sollition V;' I

(a) Elastic sulution dt'pel/dent form. Using the same technique as in Section 5.1('1) all
the fundamental viscoelastic solutions can be derived in the following form, analogous to
(39):

r • .I' = II. p, a, (46)

where fI = I for the solutions V~;'. V;-:. V7,~. V7;/l' and II = 2 for the solutions V:::. Vfi,
V7,~/, V7J;, V~fJ·

This can be made using the elastic solutions C;;(r, s = II, p, a) given in Appendix 8 and
the coefficients R

"
P, given by eqn (35) where Jr,. Ni (or ~q, N,i) are given in Table 5 (for

the 30 and 20 plane strain cases) and in Table 6 (for the 20 plane stress case). The
variables elk are the roots of the equation:
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Table 7, Coeffil:ients ,l.-f~. N~. (or ,l.-f,. ,V,l for the evaluation [by eqns (43), (35)) of the functions t·,{tl, v.(l) of
the viscoelastic fundamental solutions [in the space and time function product form of the type eqn (4:!)) on the
basis of the coefficients appearing in eqns (86)-(88). (8:!8)-(830l. (847)-(849) of the corresponding elastic

fundamental solution

.\f,~ iVI~ M, Ni

3D and :!O (plane strain) cases
3-41'

ct!(3B, -4..1,) h~(B,-A,)
(I-I')G

eqn (34) eqn (34)

I
ct!B, h~(BI-A,)

(l-I')G
eqn (34) eqn (34)

I-:!I'

I-v
B,-2A, Bi-A,

I
[-I'

B, B,-A,

I'G
h;IA, I(,'(B,-A,)

I-I'
eqn (34) eqn (34)

G
b;'B, I(,'(B,-A,)

I-I'
eqn (34) eqn (34)

20 (plane stress) case
3-1'

11':(38,-14.,) b~8,
G

eqn (34) eqn (34)

1+1'
a;'(A,+B,) h:'B,

G
eqn (34) eqn (34)

I-I' B,-Ai B,

1+1' B,+A, 8,

I'G 1>;'..1, tI,' /I, eqn (34) eqn (34)

(i(1 +1') 1>:'(..1, + fl,) c(,' II, clin (34) eqn (34)

"',,"/In -I

Cj",r/I,,+ ~ p I 0L. ,,/ = . (47)

(b) Spac/! ami lime jimclion producl jem". Using the same technique as in Section
5.1 (b) all the fundamental viscoelastic solutions can be wriuen as the sum of products of
functions of time and space. respectively. i.e. in the form:

(48)

wheref;'" I and g;~l are the same functions given in Appendix 8 relevant to the corresponding
c1ustic solutions, und l',(t) (i = j: g) are given by:

l' (I) = A!nl+:'_~[I_"r "I' R.,t I-e..].
, N m+/I,,- I IXk

""2,, k-I (,,,+/In)7.;>1I,,-I+ L iP;'1.~-1

i-I

(41)

where fJ = I for the solutions Vr..,". V:i. V~J~' V7:/l and fJ = 2 for the solutions V7." , Vr:.
V~;'/l' V~r.. VI:-P.

In general. with reference to the generic viscoelastic fundamental solution the
coefficients M~. N~ (or M,. N i ) required in order to define time functions l'/(/). L'I1(/) of
the form given by eqn (40) are correluted (through the correspondence principle) to the
coefficients of the corresponding elastic solution in eqns (86)-(88). (828)-(830) and (847)
(849). This meuns that all the possible functions vf(/). ['I/(t) for all the viscoelastic fun
damental solutions depends only on the six elastic coefficients relevant to the 3D and 20
plane strain case and the six coefficients relevant to the 2D plane stress case.

In Table 7 all the coefficients M,). N,) (or Mi' Ni) for all such cases are given.
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6. CONCLUSIONS

The fundamental solutions for a unit concentrated force (Kelvin) for a unit con
centrated displacement discontinuity (Gebbia), and for a unit concentrated deformation of
the linear viscoelastic 3D and 2D problems have been derived using the correspondence
principle.

The following remarks can be made:

(I) using the same technique, the analogous fundamental solutions can be found in
the visco-elasto-dynamic range;

(2) Kelvin's and Gebbia's fundamental solutions have proved their usefulness in the
formulations of symmetric BIE in viscoelasticity (Carini et al., 1991);

(3) using the fundamental solution for a unit concentrated deformation (besides those
by Kelvin and Gebbia) it is possible to derive variational formulations of BIE even for
visco-elastic-plastic problems.
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APPENDIX A: RECURSIVE FORMULA FOR HIE GENERALIZED KELVIN AND MAXWELL
MODELS

(a) G,.I/t'rali:t·d Kd"ill -Voi!lt ",,,,11'1
To lind the rel:ursive formula for the model means tinding the eoellicients a,(n). b,(n) of the constitutive

law:

. .
I,a,(,,)a~1 = I,h,(n)F.~'~ ..
u u

(AI)

relevant to the model of Fig. A I (b) with" pallerns when the coellicicnts 0,('1 - I). b,(n - I) of the model of Fig.
A I (a) with 'I - I pallerns arc all known undcr thc S:lme stress a. = a. _I = a. This will be obtained in two phases:
(I) dctermining the recursive formula for the model of Fig. A I. without the elastic spring ko; (2) modifying the
recursivc formula ol>tained in order to tilkc into account the prcsence of spring ko.

Plw.'t' I. Let

'1'"- 1 ,,- I

I, a,· (11- I )a'" = I, h,· ('I - I )F.~'~ I

II 0

(A2)

be the constitutive law relevant to the nonelastic part of the model of Fig. A2(a) (deleting the spring ko). The
corresponding constitutivc law in the presence of the nth pattern will be (model of Fig. A2(b)):
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1:~' al(n-1) al"i~, =1:"-1 b.(n-1) t li)
11' 01 In-I

(b)
kn

Model with
Gn - 2n-1 -Gn

parameters

J j
,,"

l~En-I 4£

En

1:" a (n) all) =1:" bl(n) t~~,
01 1 " 01

Fig. A I. (a) Thc genemlizcd 2(n-l) + I Kelvin Voigt model; (h) the "incremented" (hy the flth
pallcrn) 2n+ I model.

. .
~ lI·(n)t7'" - ~ h·(n)r.'"[.1 I -l.",t,·"

" "
(A3)

and the following relations will hold:

where

By substitution of eqn (A6) into (A5), the following relation is derived:

The Laplace transform of eqns (A2) and (A7) give:

(M)

(A5)

(A6)

(A7)

(All)

(A9)

The pre-mulliplieation of both members of cqn (A9) by b,·(n - I )t(. and the summation for i = O•...• n - I taking
into account eqn (AS) gives:

,,- I It- I It- I ,,- I

L' (h"(n -I) +k.a"(n-I )Jq'd+ LI ".a,·(n -I)q'+ 'a = L. k.h,·(n -I )q'i. + LI ".h,·(fI-1 )q" 'i•.
o 0 0 0

(AIO)

The Laplace inverse transform of (A 10) gives:

" I ,,-I It_ I ,,- I

I, [h,·(n-I)+k.a"(n-I))a"'+ LI ".a.·(n-l)aII+ II = I. k.h,·(n-l)r.~'+I, f/.b"(n-I)r.~·+" (All)
() 0 0 0

from which, by comparison with eqn (A3). and for n ~ I :
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(a)
i (Srt-I

t~~' a',(n-1) all) = t ...., b(n-1) £(1)
U" "-, 01 I ....,

Fig. A2. (a) The generalizeu 2(n - I) + I Maxwell moud; (b) the "incrementeu" (by the nth p'lllern)
2n+ I mouel.

{
1I,OCn) = ".u~_ ,Cn-I) +k.u,oCn -I) +b,O(n -I), for i =O..... n -I,

b,O(n) = ".b,O_tCn-l) +k.b,oCn-l). for i = 0.... •n.
(AI2)

This is the recursive formula of the moud of Fig. A I in the absence of the spring k. when. in oruer to avoid
meaningful coetlicients. the following positions are considered:

{

U!I(n-l) =u:_,(n-I) =0,

b!,(n-I) =b:(n-I) =0.

b~CO) = J.

(A13)

PIrIl.W: 2. The presence of the spring ko implies, with reference to the constitutive law CA I), the following
rdations:

{

b,Cn) = b,O(n).

b:'(n)
(1,(") = u:'(,,) + -r,;-'

for i = 0.1 .... . n. (AI4)

under the obvious condition u:(n) = 0 for n ~ I.
The final recursive formula of the coefficients of the constitutive law (A I) for the model of Fig. A2(b). is

given by the relations (A 14) where the starred variables are given by relations (A 12)-(A 13).

$AS 29:23-"
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Genera/i:ed Jfax ....e// model
To find the recursive formula for the model means finding the coefficients a,(n). b,(n) of the constitutive law:

. .
L, a, (n)O'~) = L, b, (n)£~':' I

o 0

(AI5)

relevant to the model of Fig. A2(b) with n patterns when the coefficients a,(n - I), bien - I) of the model of Fig.
Al(a) with n -I patterns are all known. being £. = £._ I = £. By the adoption of the same technique as in Section
(a) the following recursive formula of the coefficients of the constitutive law (AI5) is obtained:

{

a,(n) = a,O(n).

bien) = b,O(n)+koa~(n).

where the starred variables are given by the following relations, for n ~ I :

{

° a~_,(n- I) a,0(n-1) ,
a, (n) = k + ---, ,or i = O•...• n

• 'I.

b,O_I(n-l) biO(n-l)
b,O(n) = k +--- +aiO_,(n-1). for i = 1, ...• n

• 'I.

under the conditions:

{
a~,(n-l) =a:(n-1) =0.

h~(n- I) = h:(n-l) = 0,

II~(O) = I.

APPENDIX B: FUNDAMENTAL SOLUTIONS IN LINEAR ELASTICITY AND THEIR
CORRELATIONS

(AI6)

(AI7)

(AlS)

(a) Kdl'i/l/imc/"",c/lI"I.l'fIllllioll.' UI,r II tlflil c01ln'nlrtll"d/ilrcc)
These s"lulions refer to the case of a eoneentr;lted luad (whuse eumponents arc F" i = 1.2.3) in a givcn

material point ~ of a 3D elastic homogeneous and isotropic unhounded continuum.
l.et C;:';(x.~l. (;~.;'(x.:,n) allli C;7,~(x.:) he theel1'ects (in a givcn material point x) of the load applic;ltion in

terms of the displaccmenl componen[II,( xl. of tractions {I,(X) on the surf;lce uf normal n and of stress component
(T" respectively. i.e. (nsing Cireek and l.atin symbols for "cause" ;lI1d ··el1'..:ct'· vari;lbles respectively):

(BI)

(1l2)

(B3)

Obvious relations between the above Kelvin fundamental solutions arc:

(B4)

(1l5)

The full expressions uf the above sulutiuns arc lhe folluwing (Banerjee and Bulterlleld. I9111 ; Brebbia el ul.,
1911-l) :

where

and, for the 3D-case:

C""( _) (3 -4v) J""( _) 1 ""W(_)
J" x.~ = (l-=vlG " X,~ + (I-VIC"" x... ,

"'ff _ 1- 2v 'pll _1_ pw
G,,(x.:.nl - I-v j,,(x.:.n)+ I_vg,,(x.:.n).

I-lv I
G7,~(x.:) = i-v r;:(x.:) + 1-_ v 97;: (x. ~).

X,-~. .\' .. -~'I
" = -- '11 = --~-. r" = r,Ie"..

(B6)

(B7)

(Bll)

(89)

(BIO)

(BI1)



Fundamental solutions for linear viscoelastic continua

I:'(x.:. D) '"' I~;'(x. :)It/.

gf."(X.:.O) =!f.;,(X. :)It/.

I
17;.(x.:) = - 87tr,(rJ t5 .. +r,b,.-r.a,).

while for the 2D·plane strain case:

1
9:':(X.:) = 87t"r •.

Ir."(x.:.n) = I~~(x.:)n,.

91':(X.:.O) =!f.;,(x. :)n,.

I
,tf,;',(x.:) = -,-'/','.,

~7t,
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(BI2)

(B13)

(BI4)

(BI5)

(BI6)

(BI7)

(BI8)

(BI9)

(B20)

(821)

Finally. for the 2D-plane stress case the same relations for the 2D·plane strain case hold. when the Poisson
ratio" is substituted with:

(U22)

(b) (i('''hia/imdtlfl/('lIItll s"luli""s (Ii" tl u"il co"c('lIIml"d displtl('('fII('nf di.tconlinuily)
These solutions refer to the e:lSC of a conccntr:lted displacement discontinuity (whose components arc O~.

i ,,< 1.2. 3) in a given m:llt:ri:11 point: (crossing ;1 surface r with normal I) of a 3D e1:lstic homogeneous and
isotropic unbuunded continuum,

Lct (,'~:(x. :.1). (1~:(x.:. n.l) and G~::(x. :.1) be thc ctfects (in a givcn matcrial point x) of lhe load applieatiun
in terms ur the displaccment cumpunent u,(x).uf tractiuns p,(x) on the surface of normal n and of stress compunent
11,,(x) resp~'\:tively. i,c, (using Grcck and Latin symbols for "cause" and "cffect" variables. respectively):

{
G~(X.:.I)D~ = u,(x).

G:t(x.:. n.I)O~ = 11,/(x),,/ = p,(x).

G~:;(x.:.I)O~ = ",,(x),

Obvious relations between the above Gebbia fundamental solutions are:

{
G~:(x.:.n.1) = G~;'(x.:.I)n,.

2G,·
G7;'(x.:.I) = G[G~/(x.:.I)+G;:,(x.:.ll1+ -.,-G;~.(x.:.I)J",1-_"

The full expressions or the above solutions arc the following (Gebbia. Illlli. 1902. 1904):

where for the 3D-case:

I
I':!:(x. :.1) = 1':':(:. x.l) = 1:;,(:. x)/, = --, (, ,()~ +, ,J" -, ,,).,)//.

87t"

3
,tt::(x. :.1) = g':':(:. x.1) = ,tf,;.(:. x)lj = Sir," ,',' .(.

(U23)

(824)

lU25)

(826)

(827)

(828)

(B29)

(830)

(831)

(B32)
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[,:(x.~. D.I) [7:;'(x. ~.I)n"

gf:(X.~.D.1) ""g~::,(x.~.I)n"

(B33)

(B3-l)

(836)

while for the ::!D·plane strain case:

I. I
r::,(x.~.1) ""-,- (r.J,.+r,<>.. -r,o... ) ••
- ~~r '

1
g;~(x.~.1l = ,r,r.,r.i•.

_~r

/;:;(x.~.n.l) "" /7r.(x.~.I)ni = o.

(B37)

(B38)

(B39)

(B40)

(B4l)

Finally. for the ::!D-planc stress case the same relations for the ::!D-plane strain case hold. when the Poisson ratio
v is suhstituteu with v· given by elln (1122).

(c) fllllliamental.wllltia//s (./I,r allnit ca//CI'//frated d.~/I'rr1lllfj"n)

These solutions refer hi the case of a concentrated ueformation (whose componcnts arc 0", i. j = 1.2.3) in
a given material point C(crossing a surl;\ee r with normal!) of a 3D clastic homogcncous anu isotropic unhounueu
continuum,

Let G:';p(x. ~}. G::;'(x.~. n} .IIIU G7;'p(x. C) the elli:cts (at a given m;lterial point x) of the loau application in
terms ,,1' thc disp!;\I;cmcnt e\lmponent u,(x). (If tractions p,(x) on the surface of nonnal n and of strcss component
11,,{X) respectively. i,e. (using Greek anu Latin symhols for "cause" anu "cITeer' variables. rcs(l<.-ctively):

(1l42)

(B43)

«(44)

Ohvious relations hctwecn the ahove funuamental solutions arc:

(1l-l5)

(B46)

The full e,~pressions of the above solutions arc the following:

(B-l7)

(848)

(849)

where for the 3D·case:

3
f/~,'i,(X. C) "" fI:~,(':. x) "" 8~rl r ,r ~'I'

(850)

(851)

(852)

(853)
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if.;'(x.~) '= 4~ ("""81 +"""8' -"'JA, +3",~r ,r ,+ 3b"r ~r, -15r ,r ,r,r ~). (B55)
1fr

and for the 2D-plane strain case:

!';p(x.~. 0) = /7;'8('" ~)n, = O.

(B56)

(B57)

(B58)

(859)

(860)

finally. for the 2D·plane stress case the same relations for the 2D-plane strain case hold. when the Poisson ratio
v is substituted with v· given by eqn (822).


